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Abstract. We calculate the semiclassical asymptotics of the moments of a function that
characterizes the accidental energy level degeneracies of the square billiard. The results quantify
the deviations from generic (Poisson) statistics in this spectrum.

1. Introduction

It has been conjectured that generically, in the semiclassical limit, quantum spectral statistics
on the scale of the mean level separation are Poissonian in classically integrable systems [2].
However, integrable systems which do not exhibit Poissonian statistics are also known. One
obvious class of examples are simple harmonic oscillators. Others include two-dimensional
rectangular billiards in which the square of the aspect ratio is rational.

Recent results [14] imply that these exceptional cases are far more numerous than
previously anticipated. This then promotes the question of how the spectral fluctuations can
best be characterized in such systems. For harmonic oscillators, this has been investigated
using a number of different approaches [2–4, 6, 10, 12, 13]. Our purpose here is to focus on
one (the simplest) rational rectangular billiard, namely the square.

The energy levels in the square billiard, when suitably scaled, are given by

Em,n = m2 + n2, (1)

where the integersm andn satisfym > 0 andn > 0. The density of states may thus be written

d(E) =
∞∑
n=1

r2(n)δ(E − n), (2)

the degeneracy functionr2(n) being the number of ways thatn can be expressed as a sum of
two squares. The fact that in this case the spectral statistics are non-Poissonian is due to a
semiclassically increasing density of accidental degeneracies, which cause the level spacings
distribution to tend to a delta-function at zero spacing whenE→∞ (see, for example, [5]).

One way to characterize eigenvalue statistics for the square is in terms of the spectral
two-point correlation function. This is obviously determined by the two-point correlations
of r2(n). These were calculated explicitly in [5], and shown to exhibit number-theoretical
fluctuations about a Poissonian background.

Another way is in terms of the moments ofr2(n). Moments higher than the second
are related to higher-than-two-point spectral correlations, and so contain information beyond
that previously calculated. Our main result here is a general formula for the leading-order
semiclassical (n→∞) asymptotics of any given moment ofr2(n). The higher moments turn
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out to be strongly determined by the accidental degeneracies, and hence represent increasingly
sensitive measures of the deviations from generic Poissonian form of the spectral statistics.

This paper is structured as follows. In section 2 we outline the general method of
calculation. In section 3 we calculate the second, third and fourth moments explicitly. For
the second and third moments, we obtain terms in the semiclassical asymptotics beyond the
leading order, and compare the results with numerical computations. Finally, in section 4 we
derive a general expression for the leading-order asymptotics of any given moment.

2. General method

Our calculation of the moments ofr2(n) will be based on a well known relationship (see, for
example, [9]) between a sum

σ(X) =
∑
n6X

ξ(n) (3)

and its associated Dirichlet series

4(s) =
∞∑
n=1

ξ(n)

ns
. (4)

This is that if

I (X) = σ(X + ε) + σ(X − ε)
2

(5)

is the average of the right- and left-hand limits of the step-discontinuous functionσ(X), then

I (X) = 1

2π i

∫ a+i∞

a−i∞
4(s)

Xs

s
ds, (6)

where the real constanta is large enough to ensure the absolute convergence of the Dirichlet
series. The derivation of this equation follows immediately upon interchange of the integral
in (6) with the sum in (4).

We define the moments ofr2(n) by

Mk(N) = 1

N

N∑
n=1

rk2(n). (7)

The semiclassical (N → ∞) asymptotics is obtained by forming a Dirichlet series as in (4),
then computing the contribution to the integral (6) from the dominant (right-most) pole of
the resulting integrand in the complexs-plane. What allows us to do this is the fact that the
Dirichlet series can be re-expressed as an Euler-product over the primes. The right-most pole
can then be identified, and the residue calculated explicitly.

The Euler product is derived using the following formula forr2(n). Let q denote the
primes,p the primes congruent to 1 modulo 4, andr the primes congruent to 3 modulo 4. The
prime decomposition of an integern may therefore be written uniquely as

n =
∏
q

qmq(n) = 2m2(n)
∏
p

pmp(n)
∏
r

rmr (n). (8)

Then [8]

r2(n) =

∏
p

(mp(n) + 1) if 2|mr(n) ∀r

0 otherwise.
(9)
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To give an example, the first moment (i.e. the average ofr2(n)) can be calculated using

41(s) =
∞∑
n=1

r2(n)

ns
(10)

= 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

[
1 +

2

ps
+

3

p2s
+ · · · + (k + 1)

pks
+ · · ·

]
, (11)

where the second equality can be checked by first re-expanding the prime products, then using
(9). Evaluating the sum in thep-product gives

41(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

1

(1− 1
ps
)2
, (12)

and so we recognize that

41(s) = ζ(s)L(s), (13)

where

ζ(s) =
∏
p

1

1− 1
ps

(14)

is the Riemann zeta function, and

L(s) =
∏
p

1

1− 1
ps

∏
r

1

1 + 1
rs

(15)

is an entire function ofs [1].
The leading-order contribution to theX→∞ asymptotics of the integral (6) comes from

the right-most pole of the integrand; this is the pole ofζ(s) at s = 1: ζ(s) = (s − 1)−1 + O(1)
ass → 1. Thus∑

n6X
r2(n) ∼ Xπ

4
(16)

asX→∞, since [8]

L(1) = 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
. (17)

This clearly corresponds to the well known asymptotics for the number of lattice points in a
quarter circle. In the notation introduced above, it is equivalent toM1(N) ∼ π/4 asN →∞.

To quantify the error in the leading order asymptotics would require a calculation of the
size of the integral along the contour deformed around the pole ats = 1, but we do not attempt
that here. In specific cases, order estimates can be made (see, for example, [9]), however in
general the true order is not known; even in the simple example just described, this is viewed
as an important unsolved problem [7].

It is also worth remarking that this error will depend on the type of averaging used to define
the moments: if (7) is replaced by an infinite sum using a smooth characteristic function,
the error will, in general, be reduced. The method described above then still applies, but
with a modified integrand in (6). Again, since we are only concerned with the leading-order
asymptotics, this further generalization will not be pursued here.
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3. Second, third, and fourth moments

The generating function for the second moment is given by

42(s) =
∞∑
n=1

r2
2(n)

ns
(18)

= 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

[
1 +

4

ps
+

9

p2s
+ · · · + (k + 1)2

pks
+ · · ·

]
. (19)

As in the example of the last section, this can be checked by re-expanding the prime products,
and then using (9). Performing the sum in thep-product gives

42(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

1 + 1
ps

(1− 1
ps
)3

(20)

which can also be written in terms ofζ(s) andL(s):

42(s) = 1

(1 + 1
2s )

ζ 2(s)L2(s)

ζ(2s)
. (21)

Substituting this into (6), the right-most pole of the integrand is again the double pole
of ζ 2(s) at s = 1 (the zeros ofζ(s) all have Res < 1 [9]). The leading order terms in the
N →∞ asymptotics of the second moment then come from the residue ats = 1, and are

M2(N) ∼ 1
4 logN + α, (22)

where, with primes denoting derivatives,

α =
(
γ

2
+

2

π
L′(1)− 3

π2
ζ ′(2) +

1

12
log 2− 1

4

)
, (23)

which may be evaluated to giveα ' 0.504. The first term in (22) agrees with a calculation of
Marklof [11] based on deep results from the theory of theta sums.

In numerical computations it is more convenient to use a local average for the moments,

rk2(n) =
1

2W + 1

n+W∑
m=n−W

rk2(m), (24)

rather than (7). Then

r2
2(n) ∼

d

dn

n∑
k=1

r2
2(k) ∼

1

4
logn + α +

1

4
(25)

asn → ∞. In figure 1 we plot this asymptotic approximation against logn, together with a
numerical computation ofr2

2(n) using (24) withW = 250 forn ∈ {251, 10 000} andW = 500
for n ∈ {10 000, 19 499}.

The generating function for the third moment ofr2(n) is, in the same way, given by

43(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

(
1 +

23

ps
+

33

p2s
+ · · · + (m + 1)3

pms
+ · · ·

)
. (26)

The terms in thep-product sum to give

43(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

1 + 4
ps

+ 1
p2s

(1− 1
ps
)4

(27)

= [L(s)ζ(s)]4

(
1− 1

2s

)3∏
r

(
1− 1

r2s

)3∏
p

(
1 +

4

ps
+

1

p2s

)(
1− 1

ps

)4

= [L(s)ζ(s)]4B3(s), (28)
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Figure 1. r2
2(n) plotted against logn. The dots are numerically computed values, the straight line

represents the asymptotic approximation (25).

where the last equality definesB3(s).
The reason for choosing this particular factorization is thatB3(s) is singularity-free in the

half-plane Res > 1; ther-product itself converges in this region, and the convergence of the
p-product is guaranteed by the vanishing of the term proportional to1

ps
. The singularity that

dominates the large-N asymptotics of the third moment is therefore again the pole ofζ(s) at
s = 1.

Evaluating the resulting contribution to the integral in (6) then gives

M3(N) ∼
(π

4

)4 1

6
B3(1) log3N

+
(π

4

)4
[

1

2
B ′3(1) +

(
2γ − 1

2

)
B3(1) +

8

π
B3(1)L

′(1)
]

log2N

+

{(π
4

)4
[

1

2
B ′′3(1) + (1− 4γ + 6γ 2 − 4γ (1))B3(1) + (4γ − 1)B ′3(1)

]
+
(π

4

)3
[16γL′(1)B3(1) + 4L′(1)B ′3(1) + 2B3(1)L

′′(1)− 4B3(1)L
′(1)]

+
(π

4

)2
6B3(1)[L

′(1)]2

}
logN

+

{(π
4

)4
[
−4B ′3(1)γ + 4B3(1)γ

3− B3(1) + 2B3(1)γ (2) +
1

6
B ′′′3 (1)

+6B ′3(1)γ
2 + 4B3(1)γ (1) + 4B3(1)γ − 6B3(1)γ

2 − 4B ′3(1)γ (1)

− 1

2
B ′′3(1)− 12B3(1)γ γ (1) + 2B ′′3(1)γ +B ′3(1)

]
+
(π

4

)3
[
24B3(1)L

′(1)γ 2 − 4B ′3(1)L
′(1) +

2

3
B3(1)L

′′′(1) + 4B3(1)L
′(1)

−2B3(1)L
′′(1)− 16B3(1)L

′(1)γ + 2B ′′3(1)L
′(1)
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Figure 2. The asymptotic approximation forr3
2(n), obtained from (29), and numerically computed

values, plotted against logn.

−16B3(1)L
′(1)γ (1) + 2B ′3(1)L

′′(1) + 8B3(1)γL
′′(1) + 16B ′3(1)L

′(1)γ
]

+
(π

4

)2
[6B3(1)L

′(1)L′′(1) + 24B3(1)γ [L′(1)]2

+6B ′3(1)[L
′(1)]2 − 6B3(1)[L

′(1)]2] +
(π

4

)
4B3(1)[L

′(1)]3

}
, (29)

where primes again denote derivatives,B3(1) ' 0.0527,B ′3(1) ' 0.263,B ′′3(1) ' 0.528,
B ′′′3 (1) ' −1.521,L′(1) ' 0.193,L′′(1) ' −0.153 andL′′′(1) ' 0.0873. The corresponding

asymptotics forr3
2(n) ∼ d

dn (nM3(n)), obtained by substituting these values into (29), is plotted
in figure 2, together with data computed using (24) withW = 103 for 103 6 n < 106 and
W = 105 for 106 6 n < 1010.

It is worth remarking that the coefficient of the term that grows as log3 n in r3
2(n) is

approximately 0.0033, the coefficient of the log2 n term is approximately 0.0830, and the
coefficient of the logn term is approximately 0.520. Thus while the first term dominates as
n→∞, in the range of our numerical computations (logn < 23) all are needed.

As a final explicit example, we now compute the leading-order term in the asymptotics of
the fourth moment. The generating function in this case is

44(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

(
1 +

24

ps
+

34

p2s
+ · · · + (m + 1)4

pms
+ · · ·

)
(30)

= 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

1 + 11
ps

+ 11
p2s + 1

p3s

(1− 1
ps
)5

. (31)

As above, we factorize this as

44(s) = L8(s)ζ 8(s)B4(s), (32)
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where

B4(s) =
(

1− 1

2s

)7∏
r

(
1− 1

r2s

)7∏
p

(
1 +

11

ps
+

11

p2s
+

1

p3s

)(
1− 1

ps

)11

(33)

is, by virtue of the fact that there is no term proportional to1
ps

in thep-product, singularity-
free in Res > 1. Thus the right-most singularity is again that ofζ(s) at s = 1. Evaluating
its contribution to the integral (6) then implies that to leading order in logN (that is, now
neglecting terms that are O(log6N))

M4(N) ∼
(π

4

)8 B4(1)

5040
log7N. (34)

r4
2(n) shares this same leading-order asymptotics.

Explicit expressions for the lower-order contributions can be written down in terms of the
derivatives ofζ(s), L(s) andB4(s), as before, but we do not present them here. Instead, we
focus on the generalization of this leading-order result to all higher moments.

4. General moment asymptotics

Generalizing the scheme described above tokth moment ofr2(n) is straightforward. The
generating function forrk2(n) is

4k(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

ρk

(
1

ps

)
, (35)

where

ρk(x) = 1 + 2kx + 3kx2 + · · · + (m + 1)kxm + · · · . (36)

Thus from the examples considered in the previous section

ρ0(x) = 1

1− x (37)

and

ρ1(x) = 1

(1− x)2 . (38)

ρk satisfies

ρk(x) = d

dx
[xρk−1(x)] (39)

and so we write

ρk(x) = 1 +akx + bkx2 + · · ·
(1− x)k+1

. (40)

Substituting (40) into (39) leads to a recurrence relation forak whose solution is

ak = 2k − k − 1. (41)

We now have that

4k(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

(1 + ak
ps

+ bk
p2s + · · ·)

(1− 1
ps
)k+1

(42)

= 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

1

(1− 1
ps
)k+1+ak

Ak(s), (43)
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where

Ak(s) =
∏
p

(
1 +

ak

ps
+
bk

p2s
+ · · ·

)(
1− 1

ps

)ak
(44)

is, by construction (because it contains no term proportional to1
ps

) non-singular in Res > 1.
It then follows from (41), and the fact that

ζ(s)L(s) = 1

1− 1
2s

∏
r

1

1− 1
r2s

∏
p

1

(1− 1
ps
)2
, (45)

that

4k(s) = [L(s)ζ(s)]2k−1 ×
(

1− 1

2s

)2k−1−1∏
r

(
1− 1

r2s

)2k−1−1

Ak(s) (46)

= [L(s)ζ(s)]2k−1
Bk(s), (47)

which definesBk(s).
When written in this way, the dominant contribution to theX → ∞ asymptotics of the

integral (6) comes from the pole of order 2k−1 ats = 1 associated with the zeta function. This
then gives, to leading order in logN ,

Mk(N) ∼ 1

(2k−1− 1)!
Bk(1)L(1)

2k−1
log2k−1−1N, (48)

the same formula also applying tork2(n).
The asymptotic approximation (48) represents our main result. The divergence asN →∞

is due to the fact that the energy levels (1) of the square billiard are increasingly degenerate in
the semiclassical limit. Our main purpose here was to draw attention to the strong dependence
of the form of this divergence on the moment-powerk. It is, of course, no surprise that higher
moments are more sensitive to these degeneracies. What is surprising is the degree to which
this is so. It suggests that the higher spectral moments may be worth studying in other systems
whose levels have a limiting distribution that is non-Poissonian.
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